Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens

نویسندگان

  • Essam K. F. Elbeshehy
  • Ahmed M. Elazzazy
  • George Aggelis
چکیده

Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus, and Bacillus licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77-92 nm. TEM observations showed that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticle stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium) is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from -16.6 to -21.3 mV) and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity

In this paper we report an eco-friendly route for the synthesis of sliver nanoparticles using Agaricus bisporus (white button mushroom) extract. The synthesized silver nanoparticles were confirmed and characterized by UV-Visible spectrum of the aqueous solution containing silver ions showed a peak at 420 nm corresponding to the surface plasmon absorbance of silver nanoparticles. Transm...

متن کامل

Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity

In this paper we report an eco-friendly route for the synthesis of sliver nanoparticles using Agaricus bisporus (white button mushroom) extract. The synthesized silver nanoparticles were confirmed and characterized by UV-Visible spectrum of the aqueous solution containing silver ions showed a peak at 420 nm corresponding to the surface plasmon absorbance of silver nanoparticles. Transm...

متن کامل

Rapid synthesis and characterization of Gold and Silver nanoparticles using exopolysaccharides and metabolites of Wesiella confusa as an antibacterial agent against Esherichia coli

Characterization and the antibacterial potential of gold (AuNPs) and silver nanoparticle (SNPs) biosynthesized greenly using exopolysaccharides (EPS) and Culture Free Supernatant (CFS) of Wesiella confusa against some multidrug resistance (MDR) E. coli was investigated. The biosynthesized nanoparticles were characterized by UV-visible spectra, Fourier Transfor...

متن کامل

Rapid synthesis and characterization of Gold and Silver nanoparticles using exopolysaccharides and metabolites of Wesiella confusa as an antibacterial agent against Esherichia coli

Characterization and the antibacterial potential of gold (AuNPs) and silver nanoparticle (SNPs) biosynthesized greenly using exopolysaccharides (EPS) and Culture Free Supernatant (CFS) of Wesiella confusa against some multidrug resistance (MDR) E. coli was investigated. The biosynthesized nanoparticles were characterized by UV-visible spectra, Fourier Transfor...

متن کامل

Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria

Background: Silver nanoparticles (AgNPs) are among the most effective antimicrobial agents that are used in the medicine and pharmaceutics. During the past decades, metal nanoparticles synthesis through application of the biological methods has increasingly been used, as the biologically synthesized particles are mostly non-toxic as well as effective. Objectives: The main goal for undertaking t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015